FRACTIONAL CUT: IMPROVED RECURSIVE BISECTION PLACEMENT
Ameya Agnihotri Mehmet Can YILDIZ Ateen Khatkhate Ajita Mathur Satoshi Ono Patrick H. Madden

SUNY Binghamton Computer Science Department
http://vlsicad.cs.binghamton.edu

ABSTRACT

In this paper, we present improvements to recursive bisection based
placement. In contrast to prior work, our horizontal cut lines are
not restricted to row boundaries; this avoids a “narrow region”
problem. To support these new cut line positions, a dynamic pro-
gramming based legalization algorithm has been developed. The
combination of these has improved the stability and lowered the
wire lengths produced by our Feng Shui placement tool.

On benchmarks derived from industry partitioning examples,
our results are close to those of the annealing based tool Dragon,
while taking only a fraction of the run time. On synthetic bench-

marks, our wire lengths are nearly 23% better than those of Dragon.

For both benchmark suites, our results are substantially better than
those of the recursive bisection based tool Capo and the analytic
placement tool Kraftwerk.

1. INTRODUCTION

Advancing fabrication processes has enabled an explosion in the
number of logic gates in “typical” designs, resulting in an industry
need for placement methods that can handle millions of movable
objects. At the same time, design cycle times have shrunk; time-
to-market pressure has put a premium on speed for design tools.

While increased capacity and speed are desired, we also wish
to avoid sacrificing quality. The work presented improves the qual-
ity of results obtained by a fast placement approach. We use a
traditional formulation, but relax one common assumption.

Our primary contributions are the development of a fractional
cut approach, and a complementary legalization algorithm. In re-
cursive bisection, horizontal cut lines are normally aligned with
cell row boundaries—this places a number of constraints on the par-
titioning engine. Legalization for bisection based approaches is
usually trivial; new horizontal cut positions require a more sophis-
ticated approach. We take advantage of the uniform distribution
of cell area that results from our bisection based approach, and
develop a legalization method that is efficient and effective.

The remainder of this paper is organized as follows. We first
briefly survey prior placement methods. We next describe our frac-
tional cut approach, and provide an explanation of how we legalize
placements. Experimental results show the dramatic improvement
in wire length our methods have produced. We conclude the paper
with a summary of current and future work.

2. PRIOR WORK

Placement is a well studied area of physical design. We focus on
standard cell placement here, and briefly survey the three major ap-
proaches to the problem—-simulated annealing, analytic placement,
and partitioning based placement.

Simulated annealing[12] is well known to produce excellent
results, but with high run times. This approach starts with an initial
placement and “temperature.” Modifications to the placement are
randomly generated, with move acceptance guided by a probabilis-
tic function. Timberwolf[15] is one well-known annealing tool;
given sufficient time, it produces excellent results. Dragon[16] is
a hybrid that combines recursive bisection with annealing. The
hMetig[11] partitioner first divides the cells into a set of bins; an
annealing process is then used to move cells between bins to opti-
mize a wire length objective.

Analytic placement algorithms transform the placement prob-
lem into systems of equations; solving these equations results in a
global optimum. This solution, however, may contain a large num-
ber of overlapping cells. A legalization step is required to move
cells to rows and to remove overlap. Well known analytic place-
ment tools include GORDIAN[13], Kraftwerk[10] (sometimes known
as “Plato” or “FD-98"), and mPL[6].

Most partitioning based placement methods follow the approach
of Dunlop and Kernighan[9]. Current partitioning based tools in-
clude Capo[5] and Feng Shui[18]. Both use multi-level min-cut
hypergraph partitioning methods. Capo uses MLPart[3] where as
Feng Shui uses hMetis and a k-way algorithm based on iterative
deletion. Both tools use local branch-and-bound optimization.

3. IMPROVED RECURSIVE BISECTION

An overview of our placement tool, Feng Shui 2.0, is shown in
Figure 1. In most respects, our approach is similar to traditional
recursive bisection placement tools. Starting from an initial net list
and placement area, a partitioning algorithm is used to divide the
net list, while cut lines are used to split the placement area. The di-
rection of cut lines in our approach is determined by an aspect ratio
parameter[18]. In addition to traditional partitioning with hMetis,
we also use large-scale k-way partitioning by iterative deletion[17]
to obtain initial terminal propagation information.

3.1. Fractional Cuts

Traditionally, horizontal cuts are made along cell row boundaries;
in [4], the authors note “a straight-line cut perpendicular to rows
can take a much larger set of locations, while straight-line cuts par-
alld to rows can effectively be only between rows.” We challenge
this common assumption in this paper.

The motivation for restricting horizontal cuts to row bound-
aries is obvious: row assignments for each cell can be determined
easily. Relative horizontal positions of cells can be found by sim-
ply comparing the X coordinates of the cells in any given row.
While this restriction simplifies many things, it introduced a “nar-
row region problem” that was a source of instability for an earlier
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Figure 1: Flow chart for Feng Shui 2.0.
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Figure 2: In recursive bisection, if regions become tall and narrow,
horizontal partitioning may be difficult; it may not be possible to
split cells into rows while obeying row area constraints, or feasible
solutions may have high numbers of cut nets.

version of our tool, Feng Shui 1.5.

Figure 2 illustrates the problem: we have two regions that each
span two cell rows. The width of each region is 5 units; the cells to
be assigned to each region have widths of 4, 4, and 2 respectively.
If we cut the regions horizontally, no partitioning solution exists
that meets the area constraints of the rows. In the earlier versions
of our placement tool, the narrow region problem could result in
unbalanced partitioning results, and also unbalanced row lengths.

To avoid this problem, the placement tool Capo partitions hor-
izontally if there are fewer than 15 cells per row in a region. Capo
also uses the additional white space found in most designs to in-
crease partitioning tolerance, improving the chance that an accept-
able solution exists. The aspect ratio used in Feng Shui 1.5, along
with the cell widths and spacings found in the MCNC benchmarks,
allowed the problem to be avoided. For more recent benchmarks,
the simple “row packing” approach used by default in Feng Shui
1.5 produces pathological behavior, with row lengths varying sub-
stantially. Between versions 1.5 and 2.0, many legalization meth-
ods were explored; we present the most effective method here.

This problem motivated our consideration of alternate hori-
zontal cut positions. Allowing a region to occupy a fraction of a
row (a “fractional cut”) provided greater tolerance in partitioning.

3.2. Legalization

Obviously, if our bisection process does not align cuts with row
boundaries, it cannot be used to assign cells to rows. To obtain
a legal placement, cells must be shifted to cell rows, and over-
laps must be removed. The approach described here introduces
relatively small amounts of movement per cell; the cells are uni-
formly distributed across the placement area, ensuring that there is
sufficient space nearby for legalization. The motion of cells from
non-legal positions to legal positions is shown in Figure 3. Our
approach operates on a row-by-row basis, and is as follows.

e \We use the center of each region as an initial “preferred” co-
ordinate for each cell. All cells are sorted by their preferred
Y coordinate; legalization of cells is done starting with the
top-most row. A set of candidate cells (those with the high-
est'Y coordinates) is considered for each row; the total area
of the candidate cells exceeds the desired row capacity.

e A subset of the candidate cells is selected for assignment
to a row such that we minimize the assignment cost for the
row. If a cell is assigned to the row, the cost is the square of
the distance between the non-legal and legal positions. If a
cell is deferred to a subsequent row, the cost is the square
of the distance to the next row. Deferred candidate cells be-
come candidates for subsequent rows; processing continues
until all cells have been assigned to a row.

e After row assignment, the cells in each row are sorted by
their preferred X coordinate, and are packed without addi-
tional space from left to right.

While it might appear that the selection of cells would be com-
putationally intractable, our method is in fact quite efficient. Can-
didate cells are first sorted by increasing X coordinate, and the
order of cells assigned in a row is constrained by this sequence.
We refer to the candidate cells as Co,Cy, ...Cn, and use the notation
< {assigned}, {deferred} > to indicate the sets of cells that are
either assigned to the row in question, or deferred for later consid-
eration. For simplicity, assume that the cells are of uniform width.

Initially, we have < {},{} >, or no cells assigned or deferred.
By considering cell Co, we obtain two possible partial solutions,
< {Co},{} >, and < {},{Co} > (each with different costs). When
considering cell Cy, we obtain new partial solutions < {CoC1 },{} >,
< {Co},{C1} >, < {C1},{Co} >, and < {},{CoC1} >. A brute-
force approach to the problem would generate an exponential num-
ber of partial solutions; observe, however, that < {Co},{C1} >
and < {C1},{Co} > both consume the same amount of space in
the row. As assignment cost is dependent only on the distance be-
tween legal and non-legal postions, and the “right boundary” of
the two partial solutions is identical, the optimal solution for the
remainder of the cells is independent of which of Cy or C; is se-
lected.

Elimination of partial solutions with high cost reduces the num-
ber of cases that must be considered. In most designs, there are a
small number of legal cell positions. If there are p possible cell lo-
cations, and c cells considered for assignment, dynamic program-
ming provides a solution to the problem in O(p x c). Under the
constraint that the order of the cells is not changed, this solution
is optimal. We would recommend [8] as a good reference for dy-
namic programming methods.

After legalization, we apply branch-and-bound reordering on
both single and multiple rows. Feng Shui 2.0 also supports cell
mirroring and space insertion; both are essential for improving
routability. Due to space constraints, we do not discuss these here.



Bench Feng Shui Feng Shui Feng Shui Capo Dragon Kraftwerk mPL
mark 2.0 1.5+DP 15 8.6 2.23 (not legal) 2.0

wl  RT wi x RT wi x RT wi x RT wi x RT wi X wi X
ibm01 [[ 0.52 154 | 0.54 1.053 153 | 1.85 3.580 147 | 0.57 1.103 47 | 0.51 0.988 686 0.70 1.359 | 0.64 1.238
ibm02 || 1.50 297 | 1.51 1.009 292 | 5.63 3.754 291 | 1.60 1.067 109 | 1.44 0.962 1077 2.15 1433 | 1.61 1.073
ibm07 || 3.30 760 | 3.36 1.020 753 | 16.72 5.073 713 | 3.71 1.125 292 | 3.31 1.003 1732 5.12 1.553 | 4.07 1.235
ibm08 || 3.60 933 | 3.72 1.033 918 | 13.66 3.796 864 | 3.89 1.082 314 | 3.39 0.943 4357 466 1.295 | 4.25 1.181
ibm09 || 3.02 872 | 3.22 1.065 857 | 16.95 5.603 807 | 3.31 1.095 316 | 2.96 0.979 3278 4.26 1.408 | 3.81 1.260
ibm10 || 5.66 1266 | 5.88 1.037 1249 | 40.00 7.063 1209 | 6.34 1.119 475 | 5.61 0.991 5392 7.61 1.344 | 6.61 1.167
ibm11 || 4.48 1231 | 4.80 1.073 1220 | 31.73 7.091 1123 | 4.89 1.093 454 | 4.43 0.991 3523 5.80 1.296 | 5.96 1.332
ibm12 || 7.74 1379 | 8.08 1.044 1340 | 42.85 5.533 1268 | 8.76 1.132 533 | 7.60 0.982 6133 | 10.41 1.344 | 9.44 1.219
Avg 1.042 5.187 1.102 0.980 1.379 1.213

Table 1: Average wire length results for the IBM version 2 “easy” benchmarks. All wire lengths are scaled by 108. Results for the placement
tools Kraftwerk and mPL were provided by Prof. Igor Markov. The placements by Kraftwerk are not legalized, and contain a number of
overlaps; attempts to legalize the placements using DOMINO timed out or aborted on most benchmarks. All scaled wire lengths are relative

to those of Feng Shui 2.0.
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Figure 3: The legalization process moves cells from the centers
of their regions to legal locations within a cell row. Our dynamic
programming formulation finds solutions which move cells a small
distance; the lighter shaded lines show the direction of travel for
each cell for this portion of the benchmark IBMO1.

4. EXPERIMENTAL RESULTS

Benchmarking and reporting of results for placement has been
problematic; many previously reported results cannot be replicated,
or contain skewed comparisons[14, 1].

In this paper, we use widely available benchmarks; wire lengths
measured by our tools match those calculated by tools developed
at the University of Michigan. The benchmark sets we consider
here are “IBM Version 2 easy”[16] and “PEKO”[7].

The placement tools considered are our Feng Shui 2.0, Capo
8.6[4], Dragon 2.23[16], Kraftwerk[10], and mPL 2.0[6]. To eval-
uate the impact of fractional cut lines on wire length, we use Feng
Shui 1.5 to produce placements where cells are row-aligned, but
cell overlaps have not been removed; we then perform legaliza-
tion with our new dynamic programming method, and refer to this
as Feng Shui 1.5 + DP. We also include results from Feng Shui
1.5 using the simplest legalization option, sorting cells in a row
by their X coordinate. While this approach worked well for the
cell sizes and spacings found with MCNC benchmarks, the perfor-
mance here is poor. We use this configuration to emphasize that
run times are not dominated by the dynamic programming legal-
ization step.

For these experiments, the optimization objective is half perime-
ter wire length minimization; the placement tools are run in de-
fault configurations, and without any sort of timing, congestion, or

routability optimization. Run times listed are in seconds; we only
list times for experiments that were performed on our research ma-
chines, identical Dell 340 PCs with 2.4ghz Pentium IV processors,
running a Debian release of Linux.

4.1. 1BM Benchmarks
A subset of the ISPD98[2] partitioning benchmarks have been adapted
for use in placement by the authors of Dragon[16]; vertices are
mapped to a commercial standard cell library such that vertex weights
correspond with cell area, and cell pin counts match vertex degree.

Average results over five runs are shown in Table 1. We in-
clude the ratio of wire lengths and run times to aid in comparison.
The use of fractional cut lines provides an improvement of roughly
4%; the use of dynamic programming legalization avoids patho-
logical behavior. Estimated wire lengths from all three versions of
Feng Shui are nearly identical until the last stages of bisection, and
even then, there are only modest differences. Run times are shown
only for Feng Shui, Capo, and Dragon; experimental results for
the other tools were provided by Prof. Igor Markov.

Feng Shui 2.0 obtains wire lengths that are on average 10%
better than Capo 8.6; we note that Capo is significantly faster.
Dragon 2.23 outperforms our tool on most benchmarks, but on av-
erage, the wire lengths are less than 3% better, while run times
are three to four times higher. Our new tool also outperforms
Kraftwerk and mPL 2.0 by a wide margin.

4.2, PEKO Benchmarks

The PEKO[7] (“Placement Examples with Known Optimal™) bench-
marks are synthetic; net degree parameters are extracted from real
circuits, which can then be used to create arbitrarily large place-
ment problems that are statistically similar to real circuits. The
circuits were constructed with a known optimal configuration.

We add our results to those reported in [1] in Table 2. Note that
in this table, Dragon 2.20 was used; the more recent 2.23 version
improves on these results. On average, our placement tool outper-
forms all other tools except for mPL. Again, the cell shape and row
spacing cause pathological behavior in Feng Shui 1.5, when using
the simplest legalization procedure.



Bench Known | Feng Shui | Feng Shui Feng Shui Capo Dragon Kraftwerk Kraftwerk mPL
mark Optimal 2.0 1.5+DP 15 8.6 2.20 (not legal) | +DOMINO 2.0

wi wl x wlh x wi X wl x wl x wl X wl X wl x
Peko01 0.81 | 1.25 1.55 | 1.30 1.60 459 567 | 129 159 | 1.46 1.80 | 1.39 1.72 1.74 2.15 | 1.10 1.36
Peko02 126 | 2.09 1.66 | 2.10 1.66 6.92 550 | 2.03 1.61 | 2.43 1.93 | 1.98 157 2.61 2.07 | 1.76 1.40
Peko03 150 | 2.62 1.75 | 2.61 1.74 8.18 545 | 2.66 1.77 | 2.93 1.95 | 3.02 2.01 3.78 2,52 | 2.05 1.37
Peko04 175 | 2.82 161 | 291 166 | 1431 818 | 3.12 1.78 | 3.87 2.21 | 3.25 1.86 425 243 | 231 1.32
Peko05 191 | 3.01 158 | 3.14 165 | 1570 8.22 | 3.16 1.65 | 3.79 1.98 | 3.92 2.05 479 251 | 257 1.35
Peko06 2.06 | 344 167 | 342 166 | 21.38 10.38 | 3.57 1.73 | 435 2.11 | 4.07 1.98 538 2.61 | 2.78 1.35
Peko07 2.88 | 491 1.71 | 498 1.73 | 38.54 13.38 | 5.07 1.76 | 6.24 2.17 | 5.73 1.99 756 2.62 | 3.95 1.37
Peko08 314 | 525 1.67 | 5.62 1.79 | 34.16 10.88 | 5.57 1.77 | 6.79 2.16 | 5.87 1.87 8.17 2.60 | 4.99 1.59
Peko09 364 | 598 164 | 6.32 1.74 | 36.03 990 | 6.47 1.78 | 7.72 2.12 | 852 2.34 | 10.00 2.75 | 4.76 1.31
Peko10 473 | 7.87 166 | 840 1.78 | 17.89 3.78 | 8.00 1.69 | 8.49 1.79 | 8.90 1.88 | 12.00 2.54 | 6.59 1.39
Avg 1.65 1.70 8.13 1.72 2.02 1.93 2.48 1.38

Table 2: Average wire length results for the PEKO suite 1 benchmarks. Results for the placement tools Capo 8.6, Dragon 2.20, Kraftwerk
and mPL 2.0 were provided by Prof. Igor Markov. All wire lengths are scaled by 10, and relative comparisons are to those of the known

optimal solution.

5. CONCLUSION AND FUTURE WORK

In this paper we have introduced a “fractional cut” approach and
a complementary legalization algorithm. Allowing arbitrary posi-
tions for horizontal cuts has improved wire lengths by 4%.

Our placement tool obtains half perimeter wire lengths 10%
percent better than Capo, and comparable to the annealing based
tool Dragon on the IBM benchmark circuits. Wire lengths for the
synthetically generated PEKO benchmarks are on average better
than Dragon 2.20, Kraftwerk, Capo 8.6; only mPL has better wire
lengths than our tool.

Many techniques presented here may be useful to other tools;
Capo and Dragon might benefit by adopting our cut line strategy,
while Kraftwerk might benefit from our legalization algorithm.
Our current work is to further improve the wire lengths and the run
times of our tool; we are also actively working on circuit routing
and on methods to optimize routability during placement. Feng
Shui 2.0 is freely available through our research group web site,
and also through the GSRC Bookshelf (http://www.gigascale.org).
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