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ABSTRACT

Netlist partitioning is an important and well studied problem. In
this paper, a linear time partitioning approach based oniterative
deletionis presented. We use the partitioning problem to allow a
fair comparison of the iterative deletion approach with well known
iterative improvement methods. For partitioning problems with a
range of edge weights, and for multi-way partitioning, the itera-
tive deletion approach can outperform the iterative improvement
method. The algorithmic approach is flexible and can support
complex cost functions directly.

1. INTRODUCTION

The netlist partitioning problem is well known; [3] provides a
recent survey of work on this problem. The common formu-
lation involves a hypergraphH(V;E), with n verticesV =
fv1; v2; :::vng. Each edgeei 2 E of the hypergraph connects
a subset of the vertices. If wepartition the hypergraph, we de-
termine a group of non-intersecting subsets ofV . Each group is
known as acluster, and when we wish to obtain a pair of clus-
ters, this is abipartition. Partitioning intok clustersc1; c2; :::ck
is known asmulti-wayor k � way partitioning. When an edgee
connects vertices in more than one cluster, we say that this edge
is cut. A common objective is to minimize the total number (or
total weight) of cut edges, while meeting constraints on the total
number (or total weight) of vertices in each cluster.

A number of different algorithmic approaches have been con-
sidered for the netlist partitioning problem. In this paper, we in-
vestigate the relatively uncommoniterative deletionapproach. We
compare performance of this approach to more widely known it-
erative improvement approaches, and identify areas in which iter-
ative deletion outperforms iterative improvement.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly describe previous partitioning algorithms, with
a focus on iterative improvement move-based approaches. In Sec-
tion 3, we describe a number of issues related to the use of par-
titioning for circuit placement applications. Section 4 describes
our iterative deletion based partitioning approach in detail. Ex-
perimental results are presented in Section 5, where we compare
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our approach to a number of well known partitioning algorithms,
for both bipartitioning and multi-way partitioning problems. The
paper concludes with some remarks in Section 6.

2. PREVIOUS WORK

The survey of [3] provides four general classifications for current
approaches to the traditional partitioning problem.Move-based
approaches are common; most begin with a randomly chosen ini-
tial partition, and iteratively move vertices between clusters to op-
timize the number of edges cut. Geometric approaches are also
common, and approach the problem by obtaining linear orderings
of vertices throughspectralmethods. For small problems, the pro-
cessing power available on current workstations allowscombinato-
rial methods to be used, andclusteringapproaches find partitions
by merging closely related vertices iteratively.

The move-based approaches frequently employiterative im-
provement, in which an initial partition is optimized by repeatedly
moving a vertex from one cluster to another, or by swapping pairs
of vertices. The algorithm by Kernighan and Lin (KL)[14] pio-
neered this approach; the algorithm by Fiduccia and Mattheyses
(FM)[10] improves upon this general direction, providing an ex-
tremely efficient linear-time technique. The FM algorithm forms
the basis of many current partitioning methods.

These iterative improvement approaches generally operate in
a series ofpasses. Starting from an initial random partitioning,
vertices are moved from cluster to cluster, with each vertex be-
ing moved once in a pass. After all vertices have been moved, a
move-based iterative improvement approachrolls backto the best
intermediate solution, and begins another pass.

In general, an iterative improvement approach such as FM can
produce an extremely wide range of solution qualities, depending
on the initial random partitioning. In order to obtain good quality
solutions, it is common practice to run these algorithms repeatedly
using different random seeds.

The iterative improvement based FM algorithm is also quite
sensitive to the methods used to break ties during optimization;
[11] observed that a Last-In-First-Out (LIFO) strategy resulted in
a 43% improvement in minimum-cut bisection results, compared
to a First-In-First-Out (FIFO) strategy.

The survey of [3] provides a description of the other major par-
titioning approaches.

2.1. Multilevel Partitioning
The current state of the art partitioning algorithm[13] employs a
hybrid of clustering and iterative improvement. The “multilevel”
approach clusters the initial hypergraph through a series of levels,
each progressively “coarser” than the last. When the hypergraph
reaches a specified granularity, traditional partitioning approaches
can be applied. The partitioning solution at one level of coarse-
ness can be used to provide a starting point for the next level of de-
tail; rather than facing an initial random solution, each level begins



with a high quality starting point. The substantial performance im-
provements of [8, 2, 13] indicate that multilevel formulations are
extremely effective if minimized cut sizes are our final objective.

2.2. Multi-Way vs. Recursive Partitioning
If our objective is to obtain ak-way partition for values ofk of 3
or greater, we can employ either a “flat” multi-way partitioning, or
recursive bipartitioning. In experiments on large benchmarks with
the multi-way partitioning algorithm K-FM[15], it was observed
in [5] that recursive bipartitioning provided superior results. This
is somewhat surprising, in that we may expect that the greater de-
gree of freedom available through flatk-way partitioning would
provide more opportunity for optimization. In practice, it appears
that the flat multi-way iterative improvement approach encounters
a large number of local minima which are difficult to escape; the
tie-breaking schemes suggested in [11] provide little benefit, as
few ties are encountered.

The partitioning approach of [5] improved performance through
therestrictionof moves considered. Rather than allowing a vertex
to move from one cluster to any other, the clusters are “paired” at
the beginning of each improvement pass, and all exchanges occur
between the pairs. The reduction in considered moves actually im-
proves overall performance, indicating that iterative improvement
based approaches perform better when faced with fewer choices.

While recursive bipartitioning can be quite effective in minimiz-
ing cut sizes, solutions developed in this manner are less useful
in circuit placement applications. With the recursive formulation,
we lose the ability to accurately model inter-cluster routing costs.
Additionally, the mapping of a recursive bipartition basedk-way
solution to a physical placement cannot be done directly. In Figure
1, we have an example in which the quality of the final placement
depends on two different partitioning problems. If we have a con-
nection between vertices (modules)vi andvj , the placement of
one impacts the preferred location of the other; we have no way of
knowing which partitioning is “best” from a global perspective.

3. PARTITIONING AND PLACEMENT
CONSIDERATIONS

As partitioning algorithms are frequently used as a component of
circuit placement approaches, we now focus on the relationship of
partitioning solutions to placement problems. Circuit netlists can
be mapped easily into the hypergraph formulation; in fact, many
partitioning benchmarks are based on circuit netlists. A cell or
module in a circuit design is equivalent to a vertex in the hyper-
graph, while a connecting signal net is equivalent to a hyperedge.

Module placements can be obtained through a series of par-
titionings; if we recursively divide the netlist into smaller and
smaller clusters, a hierarchy with small numbers of inter-cluster
connections can be obtained. By assigning each cluster to a phys-
ical region on the integrated circuit, we obtain a placement which
has small numbers of inter-region connections. An early place-
ment algorithm based on this approach is [4]. In [9], the KL algo-
rithm was utilized to provide improved results. Recently, [12] ap-
plied an effective multilevel and multi-way partitioning algorithm,
replacing the minimum cut objective with a more precise estimate
of wiring length.

Figure 1 shows an application of bipartitioning to placement.
We assume that we are to embed the hypergraph in a small rectan-
gular region, and have an objective of minimizing the total length
of the interconnecting edges. If we partition the initial netlist or
hypergraph with verticesv1; v2; v3; v4 into two clusters contain-
ing v1; v2 andv3; v4; we can place them in two halves of our rect-
angular region. By recursively applying partitioning to the two
clusters, we can determine exact locations for each vertex or cir-
cuit element. While we have minimized the number of edges cut
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Figure 1. Recursive bipartitioning, as applied to a placement
problem. In (a), we have an initial circuit or netlist. Hierarchi-
cal partitioning is applied in (b), and the result of this hierar-
chy can be mapped to the placement (c). In this figure, vertices
that have been separated during partitioning may be adjacent
in the placement. In general, a high quality partition is not
equivalent to a high quality placement.

between clusters in this approach, we diverge from some objec-
tives relevant to the circuit placement problem. This formulation
does not address the relative adjacencies between regions in the
final placement (in Figure 1, for example,v1 is adjacent tov4,
although they are widely separated under the partitioning formula-
tion). While we have relatively few inter-region connections, some
of these connections may be excessively long.

Partitioning approaches play an active role in current circuit de-
sign, but recent advances in partitioning have not solved all the
challenges of performance driven placement. Common partition-
ing objectives may minimize the number of connections between
subcomponents, but fail to directly address concerns such as signal
delay. A partitioning solution which reduces the total number of
cut edges may do so at the expense of having one or more edges
span a large number of clusters.

The impact of a handful of “long” interconnect wires on cir-
cuit performance is substantial. Due to the scaling of device di-
mensions, interconnect delay has increased. As delay increases
quadratically with wire length, a solution which has a low number
of long inter-region connections may be inferior to a solution with
larger numbers of short inter-region connections. These few long
wires dominate system delay, preventing high performance. [16]
summarizes some of the interconnect constraints faced in current
circuit designs.

VLSI integrated circuit netlists frequently have large numbers
of vertices. Many designs have several hundred thousand logic
elements[1], and these numbers are expected to grow. A partition-
ing algorithm which is effective for flat multi-way partitioning of
large netlists is of interest for circuit placement applications. If
we assign inter-cluster routing costs (to model physical wiring dis-
tances), and utilize a large number of clusters, we quickly obtain a
rough circuit placement which may be a suitable starting point for
local refinement.

The algorithm presented has been developed with a considera-
tion of circuit placement objectives, but we address a traditional
partitioning problem formulation here. In order to make a clear
comparison of the iterative deletion and iterative improvement ap-
proaches, we do not employ any additional techniques. While
the results of both iterative improvement and iterative deletion ap-
proaches can be enhanced greatly, these enhancements obscure the
merits of the underlying approaches. For these reasons, our ap-
proach does not involve the following.

� Clustering.Clustering simplifies the hypergraph, and reduces
the solution space considerably. To measure the relative per-
formance of the two approaches, however, we are interested
in each problem being “difficult.”



If we cluster the partitioning problem, we can expect sub-
stantial reductions in cut size. While most connections in the
placed result may be extremely short, a handful can be excep-
tionally long, resulting in high delay. Thus, clustering may be
detrimental to solution quality for circuit placement applica-
tions. Clustering also obscures the delay of connections in-
ternal to the cluster, making performance driven design more
difficult.

� Recursive Bipartitioning.By repeatedly bipartitioning a hy-
pergraph, rather than attempting a “flat” partitioning, we may
reduce the number of nets cut globally. We consider both bi-
partitioning and multi-way partitioning in order to evaluate
the relative merits of the approaches under a range of condi-
tions.

As with clustering, we can expect connections which cross
cut lines to have a wide range of physical lengths. It is in gen-
eral difficult to predict which cluster a given vertex should be
assigned to, and the hierarchical clusterings produced by re-
cursive approaches may be difficult to map into circuit place-
ments. For this reason, “flat” partitionings may be preferable.

4. PARTITIONING BY ITERATIVE DELETION

The method presented in this paper is based on theiterative dele-
tion approach used in VLSI standard cell routing[7], and does not
fall into the four general classifications described in [3].

The iterative deletion approach for standard cell global routing
begins with a set of connections between module pins; while only
a single segment may be required to obtain electrical connectivity,
extra segments are included. Segments which are on cycles (and
thus are not required for connectivity) are said to beredundant.
In order to minimize total wire length and circuit area, redundant
segments are iteratively removed in a greedy fashion, until a low
wirelength and low area connected subset is obtained. This general
approach has been continued in [6].

4.1. Partitioning Approach
While the partitioning and global routing problems may seem un-
related, the iterative deletion approach can be directly applied. We
considerk-way partitioning into four clusters here, as it illustrates
our approach more clearly than simple bipartitioning.

As with the routing problems, we begin with aredundantsolu-
tion. Unlike most move-based algorithms, in which a vertex is as-
signed to a single randomly chosen cluster, we assign each vertex
to multipleclusters. If a vertex is assigned to more than one clus-
ter, these assignments areredundant. After an initial assignment
of vertices to multiple clusters, individual vertex assignments are
removed in a greedy manner, until a final non-redundant solution
is produced.

Figure 2 illustrates the iterative deletion approach. In this Fig-
ure, vertexv2 is assigned to four distinct clusters, while connected
verticesv1 andv3 each have a single cluster assignment. We select
a single redundant assignment forv2, and remove it; this selection
is based on the locations and assignments of vertices connected to
v2. While we may wish to have the final assignment ofv2 to ei-
ther cluster 1 or cluster 2, we do not commit to either at this step;
rather, we remove from consideration either cluster 3 or cluster 4.

The multi-way formulation provides an important contrast to
greedy clustering. While an operation in a clustering approach
might mergev2 into cluster 1 or cluster 2, the deletion approach
simply specifies thatv2 will not be in either cluster 3 or cluster 4.
After one operation, the clustering approach would have no free-
dom left to optimize the location of vertexv2, while the iterative
deletion approach would have three of four possible choices still
available.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
v1 1 0 0 0
v2 1 1 1 1
v3 0 1 0 0
e1 2 1 1 1
e2 1 2 1 1

Table 1. Links of vertices and hyperedges to clusters; the ver-
tex v2 is linked to multiple clusters, while verticesv1 and v3
are fixed. The hyperedges have links which are summations of
the connected vertices, and both hyperedges are fixed.

We summarize the difference between traditional iterative im-
provement algorithms (such as the move-based FM algorithm) and
the iterative deletion approach as follows.Iterative improvement
algorithms pursue moves that appear the “best,” while iterative
deletion algorithms eliminate moves that appear the “worst.”For
bipartitioning, the iterative deletion approach is similar to a greedy
clustering approach; the differences becomes apparent when we
considerk-way partitioning.

4.2. Vertex Selection
Clearly, if we wish to determine which assignment is “worst,” we
must employ some sort of cost function. From an initial assign-
ment, we can obtain an indication of which vertices and hyper-
edges are present in any given cluster. The hyperedge locations (or
possible locations) allow the generation of costs on a per cluster
basis, and these costs determine the cost of a vertex relative to a
given cluster.

Figure 2 shows a simplified graph and partial assignment, while
Table 1 shows our approach for vertex and hyperedge assignments
to each cluster. Table 2 shows the resulting costs. Our current
implementation utilizes an extremely simple cost calculation ap-
proach, which operates as follows.

� Each vertex contains a number oflinks to clusters. Each link
is considered to be an assignment. When a vertex contains
only a single link, we say that it has afixed assignment to
a cluster, or that the vertex isfixed. A fixed vertex cannot
be moved, and will be placed in the cluster as part of the
algorithm output.
At initialization, link(vi; cj) = 1 for all verticesvi, and all
clusterscj .

� Each connecting hyperedge also contains a number oflinks,
which are simply the summation of the links of the vertices
connected by the hyperedge. If a vertex of a hyperedge is
fixed to a given cluster, we say that the hyperedge is also fixed
to the cluster. If multiple vertices of the hyperedge are fixed
to distinct clusters, the hyperedge is cut.
For all edges,link(ek; cj) =

P
vi2ek

link(vi; cj)

� Thecostof a hyperedge is calculated on a per-cluster basis.
Each cluster has different cost, based on the number of links
to the cluster. If a hyperedge is fixed, it has high cost for a
single cluster. If a hyperedge is cut, all clusters have a cost of
0.
We calculatecost(ek; cj) as a function of the links of compo-
nent vertices. This function is described in more detail below.

� Thecostof a vertex is also calculated on a per-cluster basis,
and is simply the summation of costs of hyperedges to which
the vertex belongs.
cost(vi; cj) =

P
vi2ek

cost(ek; cj)
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Figure 2. A redundant assignment of vertices to clusters. In
this example, the vertexv2 is assigned to four distinct clusters.
Through the application of iterative deletion, the least desir-
able assignments forv2 are removed, until a single assignment
for v2 remains. In this example, assignments ofv2 to clusters 1
and 2 are desirable, while assignments to clusters 3 and 4 are
less desirable.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
e1 k2 0 0 0
e2 0 k2 0 0
v2 k2 k2 0 0

Table 2. Cost calculation for hyperedges and vertices. Hyper-
edgee1 has a preference for cluster 1, while hyperedgee2 has
a preference for cluster 2. The cost associated with vertexv2
is derived from the costs of the hyperedges which connect to
it. As verticesv1 and v3 are fixed, we do not need to calculate
costs for them.

In our implementation we assign a cost ofk0 to hyperedges
where vertices are completely unrestricted. When a vertex assign-
ment is removed (and we have at least some preference regarding
vertex assignments), we use a cost ofk1; and distribute it among
the clusters to which links remain. When a vertex becomes fixed
to a specific cluster, we use a cost ofk2, and have a cost of 0 for
the remaining clusters. If the hyperedge is cut (vertices are fixed
to more than one cluster), we use a cost of 0 for all clusters.

In our experiments, we usek0 = 0, k1 = 1, andk2 = 2. We di-
vide vertex costs by the degree of the vertex, and hyperedge costs
by the cardinalty of the hyperedge, in an effort to prefer small local
edges over larger ones (which are more likely to be cut). Experi-
ments with other cost functions are in progress.

We have a preference for removing redundant assignments
which are undesirablerelative to the other possible assignments
for the vertex. Rather than simply selecting the minimum cost el-
ement, we use thedifference between maximum and minimum as-
signment costto influence our selection. For example, if we have
one vertexvi, assigned to clustercm with cost 10, and to clustercn
with cost 11, and a second vertexvj has costs 10 and 20, we will
prefer to make a selection regardingvj (and we prefer to remove
vj from clustercm).

In order to ensure balanced cluster sizes, we iteratively select the
best candidate within the cluster of highest weight. In bipartition-
ing applications, this results in an alternation between clusters. We
currently consider only exact or nearly exact partitioning (cluster
sizes differ by at most one vertex).

4.3. Random Seeds

In most implementations of the iterative improvement move-based
FM algorithm, optimization begins with a randomly generated par-
tition. By repeating the optimization, differing results can be ob-
tained.

We apply a similar technique here; fork-way partitioning, we
selectk vertices, and assign each to one cluster. From this ini-
tial assignment, neighboring hyperedges and vertices are biased
towards certain clusters. This random seeding produces a range of
solutions, and we select the best result observed.

4.4. Efficient Implementation

As is done by the FM algorithm, we repeatedly select one element
from the set of all vertices at each step. The FM algorithm owes its
efficiency to a simple gain bucket strategy, and we utilize a similar
scheme. Using this strategy, element selection can be performed
in constant time.

Cost updates are also constant time in practice. For partitioning
problems where the hypergraph is based on a circuit netlist, we can
expect a small upper bound on the cardinality of any vertex, or the
degree of any hyperedge.

The number of vertex assignments that must be removed is lin-
ear with the number of vertices, multiplied by the number of clus-
ters that we consider. If we are performingk-way partitioning on
a hypergraph withn vertices, we must remove(k� 1) � n assign-
ments.

4.5. Summary

A fundamental difference between the approach presented here
and traditional partitioning approaches is that we begin withre-
dundantassignments of vertices to clusters, and remove them.
Conceptually, this is similar to the process of team construction
in professional sports. During atraining campmany players are
considered for each position on the team; poor players are elimi-
nated from consideration one at a time, until the remaining players
constitute the final team.



5. EXPERIMENTAL RESULTS

A primary objective of this work is to allow a direct and clear com-
parison of the iterative deletion approach to the more common it-
erative improvement approach. Thus, we are interested in flat bi-
partitions and multi-way partitions. State of the art partitioners
employ a number of techniques which improve results, obscuring
the relative merits of each algorithmic approach.

As we are interested in partitioning as it relates to place-
ment problems, we apply our approach to the recently introduced
ISPD98 benchmarks[1]. We consider both the metric of minimum
cut, and minimum weighted cut (where we have a variety of dif-
fering net weights).

5.1. Minimum Cut Experiments
In much of the previous work on hypergraph partitioning, the cost
objective is minimum cut, with each hyperedge contributing cost 0
if uncut, or 1 if cut. We focus on this cost metric in this subsection.

5.1.1. Bipartitioning Results

To compare the performance of the iterative deletion approach
to that of bipartitioning algorithms, we utilize an implementation
of the FM[10] algorithm made available by Charles Alpert. This
implementation was developed by Shantanu Dutt and Wenyong
Deng, and was later improved by Charles Alpert and Andrew B.
Kahng. The FM algorithm provides a simple iterative improve-
ment approach, allowing a direct comparison.

In Table 3, we compare a single pass of our iterative deletion
partitioning (IDP) algorithm to multiple passes of the FM algo-
rithm. We also apply the FM algorithm as a postprocessing step
(IDP + FM), using the iterative deletion solution as a starting point
(rather than a random vertex assignment). For our bipartitioning
experiments, we ran our algorithm 20 times, each time with a dif-
ferent seed. The IDP results reported are the minimum, maximum,
and average cut sizes forexactbipartitions; other results allow a
5% variation in cluster size. Run time is roughly linear with prob-
lem size: the largest example, ibm18, requires just under two min-
utes, running on a 233Mhz Pentium-based laptop computer. The
FM algorithm was also run 20 times, using different random seeds.
We also include the results of a state of the art partitioning algo-
rithm, hMetis[13] version 1.5.

While our iterative deletion based algorithm produces higher cut
sizes, the solution obtained can serve as a good starting point for
FM-based improvement. In these benchmarks, the solution quality
obtained by using FM as a postprocessing phase were comparable
to the quality obtained by FM alone, but the number of improve-
ment passes required was roughly halved.

The quality of solution obtained by iterative deletion is com-
parable to that of an iterative improvement which is “half way”
through a series of optimization passes.

5.1.2. Multi-Way Partitioning Results

To compare performance on flat multi-way partitioning prob-
lems, we use the results of the K-FM algorithm[15] and K-PM
algorithm[5], as reported in [5]. The K-FM algorithm provides a
simple iterative improvement approach, allowing a direct compar-
ison with the iterative deletion approach. Results of a state of the
art partitioning algorithm, hMetis[13], are included as well; this al-
gorithm employs multilevel clustering. These results are presented
in Table 4.

Again, we apply only asinglepass of iterative deletion. Sur-
prisingly, the linear time greedy implementation of iterative dele-
tion outperforms the K-FM algorithm, which employs multiple
passes of optimization. We run our IDP algorithm 20 times for
each benchmark, while the K-FM results are from 50 runs. The
abundance of possible choices apparently causes the iterative im-

provement approach to become trapped in a local minima early in
the optimization process. The K-PM algorithm is run 20 times.

In many respects, the K-FM algorithm of [15] is something of a
“straw man” multi-way partitioning approach; current approaches
to multi-way partitioning would involve multilevel clustering or
a reduction in the types of optimization moves considered. The
results here are interesting, however, as they clearly show that a
generic iterative improvement based approach has considerably
more difficulty than an iterative deletion based approach on a well
studied problem. For optimization problems in which we have
many possible choices, and iterative improvement methods pro-
vide poor performance, iterative deletion based approaches may
be quite effective.

We are currently adapting our algorithm to produce output in a
format that can be utilized by the K-PM algorithm, and expect that
post processing of the iterative deletion solution will be compara-
ble or superior to that of K-PM alone, but will require a substantial
reduction in the number of optimization passes.

5.2. Weighted Minimum Cut Experiments
For performance driven placement applications, it is desirable to
model signal delay as part of our optimization objective. In deep
submicron design, delay is not linear with wire length, so we can
expect a large range of values. If we apply partitioning algorithms
to placement problems, a formulation which addresses weighted
edge cost may be more appropriate.

In this subsection, our objective is the minimization of the total
weight of cut hyperedges. The FM implementation of Dutt and
Deng does not support weighted hyperedges; for comparison, we
use our own implementation of the FM algorithm. Performance (in
terms of total cut sizes) of our FM implementation is comparable
to that of Dutt and Deng for the non-weighted objective.

To evaluate the impact of differing hyperedge weights on al-
gorithm performance, we applied FM, IDP, IDP with FM post-
processing, and the hMetis algorithm (version 1.5.3) to the bench-
marks, using net weights that ranged from 95 to 105. The weight of
a hyperedgeei is95+i mod 11; there are 11 distinct weights, with
the average edge weight being roughly 100 (we divide weights re-
ported by 100 to make them comparable to the unit-cost results).
Table 5 shows the results of these experiments; as our FM imple-
mentation is substantially slower than that of Dutt and Deng, we
limit our experiments to ten of the smaller benchmarks.

As would be expected by the observations in [11], the perfor-
mance of the FM algorithm degrades substantially. The recom-
mended Last-In-First-Out (LIFO) strategy has little effect, as the
wide range of net weights results in extremely few ties for the the
FM algorithm. For variable edge weight problems, a single pass
of iterative deletion outperforms iterative improvement; using the
iterative deletion result as a starting point, iterative improvement
is able to obtain a solution that is much better than with iterative
improvement or iterative deletion alone. The multilevel cluster-
ing approach of hMetis continues to produce extremely good so-
lutions, obtaining results that are nearly identical to those of the
unit-cost experiments.

6. CONCLUSION

In this paper, we have presented a new partitioning algorithm based
on iterative deletion. As it supports multi-way partitioning, does
not require extensive clustering, runs in linear time, and can sup-
port complex cost functions, it is relevant to circuit placement
problems.

We have provided a comparison between the iterative deletion
approach, and the widely used iterative improvement approach.
We observe that each has areas in which they perform well. Iter-
ative improvement performs well in bipartitioning, while iterative



IDP FM IDP + FM hMetis
Cut Cut Cut

Min Max Avg Min Max Avg Passes Min Max Avg Passes Cut
ibm01 854 1290 1037.6 264 662 483 11.9 270 627 501.6 6.0 180
ibm02 802 2289 1551.1 276 820 443.1 11.2 276 652 452.7 6.1 262
ibm03 2316 3240 2730.7 1359 3491 2200.5 18.6 1665 2270 1985.0 6.4 956
ibm04 2964 4683 3724.7 739 2789 1228.5 18.1 682 2533 1120.9 11.2 542
ibm05 3991 5973 4984.3 2034 4007 2880.3 29.1 1989 3755 3011.7 9.4 1715
ibm06 2084 3770 2873.9 1027 2321 1364.2 18.4 1017 2004 1475.2 9.0 888
ibm07 2429 4944 3872.9 1044 3687 2342.7 20.4 1260 3365 2209.3 6.7 853
ibm08 3354 5448 3861.6 1317 4644 2725.9 23.2 1304 3764 2035.3 8.9 1142
ibm09 2294 5236 3422.8 1331 3696 2591.3 20.8 983 3492 1813.4 8.1 624
ibm10 6709 8261 7070.9 2211 3680 2837.3 18.4 2239 3931 3279.9 10.7 1256
ibm11 5226 7587 6483.2 2391 7678 4139.8 22.1 1543 4157 2922.2 14.1 960
ibm12 8681 12492 10869.0 2491 5788 3463.5 21.4 3257 5996 4428.2 14.1 1918
ibm13 4489 9112 6618.6 1272 3733 2243.2 17.4 1662 4479 2660.3 9.7 840
ibm14 8666 13206 11704.6 2876 11806 7144.5 26.1 3015 7431 5329.3 11.4 1837
ibm15 8794 12993 10603.1 4576 11509 8435.1 19.6 4719 7937 6266.7 10.9 2625
ibm16 12723 17943 14885.4 2279 10109 5933.1 20.2 2832 10728 5213.5 10.1 1755
ibm17 22021 28963 25423.3 5316 14258 8509.4 29.4 3834 11811 6971.3 18.9 2238
ibm18 5795 15730 10957.6 1791 5003 3254.8 26.0 1707 5638 4115.4 13.3 1541

Ratio 4.41 7.33 5.79 1.52 4.41 2.72 1.50 3.80 2.47 1.00

Table 3. Bipartitioning results for industry benchmarks. We compare runs of a single pass of our iterative deletion partitioning
(IDP) approach to those of a complete (multiple pass) run of an FM-based algorithm. We also consider the effects of applying FM
as a postprocessing step to the initial iterative deletion solution (IDP+FM). The results of the recent multilevel clustering based
partitioner, hMetis, are also included. The final row shows the average performance relative to that of hMetis.

4-Way Partitioning 8-Way Partitioning
IDP K-FM K-PM hMetis IDP K-FM K-PM hMetis
Cut Cut

Min Max Avg Cut Cut Cut Min Max Avg Cut Cut Cut
ibm01 1709 2740 2251.2 3212 576 496 3256 3842 3577.6 4234 857 755
ibm02 2625 5175 4150.1 5984 688 615 6611 7596 7118.9 7138 2069 1874
ibm03 4112 5288 4644.8 6737 2596 1682 6217 7651 6929.6 8263 3512 2396
ibm04 6117 7467 6655.6 8332 2290 1711 9116 10687 9606.0 10347 3751 2782
ibm05 6242 8694 7755.9 8537 4225 3040 8956 10093 9474.7 9387 5760 4443
ibm06 4500 6031 5244.0 8664 2096 1592 6537 8403 7751.0 10923 2954 2257
ibm07 5923 8302 7437.2 12724 3069 2168 10300 12091 11222.4 15725 4375 3284
ibm08 7451 9766 8718.1 12845 2945 2426 11528 13625 12476.6 16056 4532 3462
ibm09 7109 9821 8522.8 15888 2838 1685 13401 15549 14493.4 19619 4759 2664
ibm10 11178 16454 13611.5 20820 3163 2280 17880 21269 19730.0 26170 4888 3799
ibm11 9753 14488 12090.4 21448 4685 2300 16900 19138 17996.8 27479 6059 3543
ibm12 14762 18405 16777.7 23081 5258 3799 21278 25248 23338.2 28764 7946 6024
ibm13 11712 18785 15618.4 24758 3102 1760 19294 25802 22883.2 30975 4390 2858
ibm14 18989 26303 22483.8 38767 6451 3249 27873 36808 31513.2 49334 8424 4795
ibm15 19621 29655 24080.8 48130 8310 5014 30530 39930 36607.6 64235 11465 6610
ibm16 21134 36183 28970.0 54578 6228 3847 41441 51057 45358.1 65553 10372 6203
ibm17 35757 44883 40541.9 64340 9326 5398 50365 56957 53500.6 75432 14733 8695
ibm18 23066 30743 26997.5 53128 3952 2872 38854 45069 42234.6 65361 6588 5210

Ratio 4.35 6.29 5.36 8.81 1.51 1.00 4.46 5.39 4.93 6.80 1.45 1.00

Table 4. Multi-way partitioning results for large benchmarks. We compare the iterative deletion partitioning (IDP) solution (with-
out postprocessing) to the flat multi-way partitioning algorithm K-FM, the pair-wise matching partitioner K-PM, and the state of
the art multilevel clustering approach of hMetis. The final row shows the average performance relative to that of hMetis.



IDP FM IDP+FM hMetis
min max avg min max avg min max avg

ibm01 1393.32 1865.67 1664.06 1498.46 2266.44 1834.97 676.73 1047.83 885.47 181.48
ibm02 2250.44 3742.90 2834.55 725.83 2193.68 1341.71 786.24 1709.22 1116.31 261.28
ibm03 4355.60 5530.26 4865.17 3916.18 4746.11 4378.61 2244.79 3110.86 2558.95 955.62
ibm04 5560.26 6248.49 5804.49 2640.45 5187.13 4290.68 2935.87 3735.49 3258.18 541.81
ibm05 5996.70 7535.68 6766.83 4770.47 6739.43 6127.14 3266.82 4903.49 4153.86 1760.51
ibm06 5754.91 6860.46 6206.89 2132.42 6194.21 5392.24 2821.29 3731.58 3170.51 922.75
ibm07 6267.37 7835.69 7269.60 7039.75 8486.00 7591.87 2908.03 3884.71 3530.42 883.54
ibm08 6656.86 8817.66 7801.13 8252.02 9206.45 8874.09 3100.73 4708.88 4101.97 1143.49
ibm09 8456.28 9359.26 8851.69 9460.10 10748.72 10061.20 4190.30 4833.80 4439.38 656.30
ibm10 9534.35 12222.33 10197.81 9663.52 12342.00 10707.06 4657.03 7346.20 5414.12 1264.73

Ratio 7.41 9.41 8.30 6.23 8.98 7.72 3.55 5.10 4.23 1.00

Table 5. Variable weight bipartitioning results. We compare the iterative deletion partitioning solution to that of a traditional FM
algorithm, and to the combination of Iterative Deletion with post-processing by FM. We include also the result of the state of the
art partitioning algorithm, hMetis. Hyperedge weights vary from 0.95 to 1.05 (with an average weight of 1 across all nets). The
final row shows the average performance relative to that of hMetis.

deletion performs well in multi-way partitioning, and with vari-
able edge weights. The performance of iterative improvement ap-
proaches can be enhanced through the use of multilevel clustering
and a restriction of optimization moves considered; we anticipate
that similar enhancements can be made to our iterative deletion
based approach.

With a single linear time optimization pass, iterative deletion
was able to outperform multiple passes of iterative improvement.
This suggests that the iterative deletion approach is able to make
many decisions that are of good quality from a “global” perspec-
tive, particularly when many choices are available. For the multi-
way partitioning problem, in which we have an extremely large
number of choices, the iterative deletion based approach seems
less susceptible to poor quality local minima. For modern cir-
cuit design problems, where we are faced with large numbers of
constraints and many optimization choices, iterative deletion may
prove to be extremely effective.

We are currently adapting our algorithm to produce out-
put that can be utilized by the K-PM algorithm of [5]. In
our experiments with bipartitioning, post-processing by the FM-
based algorithm[10] improved performance substantially, while
the “good starting point” produced by our iterative deletion ap-
proach reduced the number of optimization passes required. We
expect similar results through post-processing with K-PM.

Alternative cost functions and methods to apply multiple passes
of iterative deletion are currently under consideration. If we ex-
amine a single pass of an iterative improvement algorithm such as
FM, solution quality is generally extremely poor; multiple passes
may improve the performance of iterative deletion substantially.
While some progress has been made on these issues, work is in-
complete at present.

We plan to adapt this approach for use in large circuit placement
applications. As our formulation can consider routing distances
or signal delay easily, we can produce rough circuit placements
quickly, and then refine them with more traditional local optimiza-
tion algorithms.
Acknowledgements: the author would like to thank Prof. Jason
Cong, the members of the UCLA VLSI CAD Lab, and the review-
ers for their constructive comments.
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