PARTITIONING BY ITERATIVE DELETION

Patrick H. Madder

State University of New York at Binghamton
pmadden@cs.binghamton.edu

ABSTRACT our approach to a number of well known partitioning algorithms,
for both bipartitioning and multi-way partitioning problems. The

Netlist partitioning is an important and well studied problem. In paper concludes with some remarks in Section 6.

this paper, a linear time partitioning approach basedtenative

deletionis presented. We use the partitioning problem to allow a 2. PREVIOUS WORK

fair comparison of the iterative deletion approach with well known) o

iterative improvement methods. For partitioning problems with a The survey of [3] provides four general classifications for current

range of edge weights, and for multi-way partitioning, the itera- approaches to the traditional partitioning problemdove-based

tive deletion approach can outperform the iterative improvement approaches are common; most begin with a randomly chosen ini-

method. The algorithmic approach is flexible and can support tial partition, and iteratively move vertices between clusters to op-

complex cost functions directly. timize the number of edges cut. Geometric approaches are also
common, and approach the problem by obtaining linear orderings
of vertices througlspectralmethods. For small problems, the pro-

1. INTRODUCTION cessing power available on current workstations alloarabinato-

rial methods to be used, awtlsteringapproaches find partitions

by merging closely related vertices iteratively.

The move-based approaches frequently emplesative im-
provementin which an initial partition is optimized by repeatedly
moving a vertex from one cluster to another, or by swapping pairs
of vertices. The algorithm by Kernighan and Lin (KL)[14] pio-

. . > neered this approach; the algorithm by Fiduccia and Mattheyses
known as acluster and when we wish to obtain a pair of clus- (E\y[10] improves upon this general direction, providing an ex-
ters, this is abipartition. Partitioning intok clusterscy, ca, ...k tremely efficient linear-time technique. The FM algorithm forms
is known asmulti-wayor k — way partitioning. When an edge the basis of many current partitioning methods.

connects vertices in more than one cluster, we say that this edge’ thege jterative improvement approaches generally operate in
is cut A common objective is to minimize the total number (or 5 geries ofasses Starting from an initial random partitioning,
total weight) of cut edges, while meeting constraints on the total \ortices are moved from cluster to cluster, with each vertex be-
number (or total weight) of vertices in each cluster. ing moved once in a pass. After all vertices have been moved, a

_A number of different algorithmic approaches have been con- y5ye-hased iterative improvement approaaits backto the best
sidered for the netlist partitioning problem. In this paper, we in- jntermediate solution. and begins another pass.

vestigate the relatively uncommarative deletiorapproach. We - general, an iterative improvement approach such as FM can
compare performance of this approach to more widely known it- 5qyuce an extremely wide range of solution qualities, depending
erative improvement approaches, and identify areas in which iter- 5, the initial random partitioning. In order to obtain good quality

ative deletion outperforms iterative improvement. solutions, it is common practice to run these algorithms repeatedly
The remainder of this paper is organized as follows. In Sec- sing different random seeds.

tion 2, we briefly describe previous partitioning algorithms, with The iterative improvement based FM algorithm is also quite
a focus on iterative improvement move-based approaches. In Secsgansitive to the methods used to break ties during optimization;
tion 3, we describe a number of issues related to the use of par-[11] opserved that a Last-In-First-Out (LIFO) strategy resulted in

titioning for circuit placement applications. Section 4 describes 3 4305 improvement in minimum-cut bisection results, compared
our iterative deletion based partitioning approach in detail. EX- g 3 First-In-First-Out (FIFO) strategy.

perimental results are presented in Section 5, where we compare The survey of [3] provides a description of the other major par-
titioning approaches.

The netlist partitioning problem is well known; [3] provides a
recent survey of work on this problem. The common formu-
lation involves a hypergrapti (V, E), with n verticesV =
{v1,v2,...vn}. Each edge;; € E of the hypergraph connects
a subset of the vertices. If waartition the hypergraph, we de-
termine a group of non-intersecting subsetd/of Each group is

*This work is partially supported by the SUNY Binghamton Office of
Research and Sponsored Programs. 2.1. Multilevel Partitioning

The current state of the art partitioning algorithm[13] employs a
hybrid of clustering and iterative improvement. The “multilevel”
approach clusters the initial hypergraph through a series of levels,
each progressively “coarser” than the last. When the hypergraph
reaches a specified granularity, traditional partitioning approaches
can be applied. The partitioning solution at one level of coarse-
ness can be used to provide a starting point for the next level of de-
tail; rather than facing an initial random solution, each level begins

with a high quality starting point. The substantial performance im- Vi Vo —V3z—Yy
provements of [8, 2, 13] indicate that multilevel formulations are @
extremely effective if minimized cut sizes are our final objective.

2.2. Multi-Way vs. Recursive Partitioning Y1Y2%3% , ,
If our objective is to obtain &-way partition for values ok of 3 v V‘/ \‘v v ! 2
or greater, we can employ either a “flat” multi-way partitioning, or 12 34 -
recursive bipartitioning. In experiments on large benchmarks with 7/ N 7 v, Vg
the multi-way partitioning algorithm K-FM[15], it was observed 11 %2 Vsl Y4 i

in [5] that recursive bipartitioning provided superior results. This

is somewhat surprising, in that we may expect that the greater de- ® ©

gree of freedom available through fletway partitioning would

provide more opportunity for optimization. In practice, it appears Figure 1. Recursive bipartitioning, as applied to a placement

that the flat multi-way iterative improvement approach encounters problem. In (a), we have an initial circuit or netlist. Hierarchi-

a large number of local minima which are difficult to escape; the cal partitioning is applied in (b), and the result of this hierar-

tie-breaking schemes suggested in [11] provide little benefit, as chy can be mapped to the placement (c). In this figure, vertices

few ties are encountered. that have been separated during partitioning may be adjacent
The partitioning approach of [5] improved performance through in the placement. In general, a high quality partition is not

therestrictionof moves considered. Rather than allowing a vertex equivalent to a high quality placement.

to move from one cluster to any other, the clusters are “paired” at R . .

the beginning of each improvement pass, and all exchanges occhet\Neeln cIu?t;arsthln this ipplfoach- "‘t’e dl\t/)tlarge f;%m fsomelott_)jec-

between the pairs. The reduction in considered moves actually im_(;ves re eva(;ld 0 ehC|rCL||| Pacedme” pro %m. IS formu a'lonh

proves overall performance, indicating that iterative improvement oes not address the relative adjacencies between regions in the

based approaches perform better when faced with fewer choices. gﬂﬁgﬁlicfh";ergré'&iggufe15:2{63)(&%2?%&3 g?g?ti%en?rtl t?c};lr m ula-
While recursive bipartitioning can be quite effective in minimiz- 9 y y sep P 9

. : . oo A tion). While we have relatively few inter-region connections, some
ing cut sizes, solutions developed in this manner are less useful

o A S . . . of these connections may be excessively long.
in circuit placement applications. With the recursive formulation, ™ o irioning approaches play an active role in current circuit de-
we lose the ability to accurately model inter-cluster routing costs.

o . - s sign, but recent advances in partitioning have not solved all the
Addlt'lonally, the mapping of a recursive b'pa”'“of‘ basied/ay_ challenges of performance driven placement. Common partition-
solution to a physical placement cannot be done directly. In Figure

1, we have an example in which the quality of the final placement Ing objectives may minimize the number of connections between
dé ends on two different partitioning problems. If we have a con- subcomponents, but fail to directly address concerns such as signal
Pe entp gp : delay. A partitioning solution which reduces the total number of
nection between vertices (modules) andv;, the placement of o \+'e4465 may do so at the expense of having one or more edges

one impacts the preferred location of the other; we have no way of

knowing which partitioning is “best” from a global perspective span a large number of clusters.
9 P 9 9 Persp : The impact of a handful of “long” interconnect wires on cir-

cuit performance is substantial. Due to the scaling of device di-
3. PARTITIONING AND PLACEMENT mensions, interconnect delay has increased. As delay increases
CONSIDERATIONS quadratically with wire length, a solution which has a low number

As partitioning algorithms are frequently used as a component of ©f long inter-region connections may be inferior to a solution with
circuit placement approaches, we now focus on the relationship of /arger numbers of short inter-region connections. These few long
partitioning solutions to placement problems. Circuit netlists can Wires dominate system delay, preventing high performance. [16]
be mapped easily into the hypergraph formulation; in fact, many Summarizes some of the interconnect constraints faced in current
partitioning benchmarks are based on circuit netlists. A cell or circuitdesigns.
module in a circuit design is equivalent to a vertex in the hyper- _ VLSI integrated circuit netlists frequently have large numbers
graph, while a connecting signal net is equivalent to a hyperedge. Of vertices. Many designs have several hundred thousand logic
Module placements can be obtained through a series of par-€léments[l], and these numbers are expected to grow. A partition-
titionings; if we recursively divide the netlist into smaller and "9 @lgorithm which is effective for flat multi-way partitioning of
smaller clusters, a hierarchy with small numbers of inter-cluster 'a9€ netlists is of interest for circuit placement applications. If
connections can be obtained. By assigning each cluster to a physe @sSign inter-cluster routing costs (to model physical wiring dis-
ical region on the integrated circuit, we obtain a placement which t&nces), and utilize a large number of clusters, we quickly obtain a
has small humbers of inter-region connections. An early place- rough circuit placement which may be a suitable starting point for
ment algorithm based on this approach is [4]. In [9], the KL algo- 0cal refinement. . .
frithm was utilized to provide improved results. Recently, [12] ap- . 1 he @lgorithm presented has been developed with a considera-
plied an effective multilevel and multi-way partitioning algorithm, tion of circuit placement objectives, but we address a traditional

replacing the minimum cut objective with a more precise estimate P2rtitioning problem formulation here. In order to make a clear
of wiring length. comparison of the iterative deletion and iterative improvement ap-

Figure 1 shows an application of bipartitioning to placement. proaches, we do not employ any additional techniques. While

We assume that we are to embed the hypergraph in a small rectanthe results of both iterative improvement and iterative deletion ap-
gular region, and have an objective of minimizing the total length proaches can be enhanced greatly, these enhancements obscure the

of the interconnecting edges. If we partition the initial netlist or n}ggtcsh(gotgsnuoq(?ﬁézygtﬁg%ﬂi%ﬁs' For these reasons, our ap-
hypergraph with vertices:, vz, v3, v4 into two clusters contain- p 9.

ing v1, v2 andvs, v4, We can place them in two halves of our rect- e Clustering.Clustering simplifies the hypergraph, and reduces
angular region. By recursively applying partitioning to the two the solution space considerably. To measure the relative per-
clusters, we can determine exact locations for each vertex or cir- formance of the two approaches, however, we are interested

cuit element. While we have minimized the number of edges cut in each problem being “difficult.”

If we cluster the partitioning problem, we can expect sub-

stantial reductions in cut size. While most connections in the . Clusterll CIusterOZ Cluster03 Cluster04
placed result may be extremely short, a handful can be excep- L T T T T
tionally long, resulting in high delay. Thus, clustering may be v2 o 1 0 o
detrimental to solution quality for circuit placement applica- vs

tions. Clustering also obscures the delay of connections in- e 2 1 1 1
ternal to the cluster, making performance driven design more es 1 2 1 1

difficult.

Table 1. Links of vertices and hyperedges to clusters; the ver-

¢ Recursive Bipartitioning.By repeatedly bipartitioning a hy-

tex v2 is linked to multiple clusters, while verticesv; and v3

pergraph, rather than attempting a *flat” partitioning, we may - are fixed. The hyperedges have links which are summations of
reduce the number of nets cut globally. We consider both bi- the connected vertices, and both hyperedges are fixed.

partitioning and multi-way partitioning in order to evaluate

the relative merits of the approaches under a range of condi-
tions.

As with clustering, we can expect connections which cross
cut lines to have a wide range of physical lengths. Itis in gen-
eral difficult to predict which cluster a given vertex should be
assigned to, and the hierarchical clusterings produced by re-
cursive approaches may be difficult to map into circuit place-
ments. For this reason, “flat” partitionings may be preferable.

We summarize the difference between traditional iterative im-
provement algorithms (such as the move-based FM algorithm) and
the iterative deletion approach as followlerative improvement
algorithms pursue moves that appear the “best,” while iterative
deletion algorithms eliminate moves that appear the “workgr
bipartitioning, the iterative deletion approach is similar to a greedy
clustering approach; the differences becomes apparent when we
considerk-way partitioning.

4. PARTITIONING BY ITERATIVE DELETION 4.2. \ertex Selection

The method presented in this paper is based oiit¢hative dele- Clearly, if we wish to determine which assignment is “worst,” we
tion approach used in VLS| standard cell routing[7], and does not Must eémploy some sort of cost function. From an initial assign-
fall into the four general classifications described in [3]. ment, we can obtain an indication of which vertices and hyper-

The iterative deletion approach for standard cell global routing €49€S are present in any given cluster. The hyperedge locations (or
begins with a set of connections between module pins; while only PoSSible locations) allow the generation of costs on a per cluster
a single segment may be required to obtain electrical connectivity, b_aS|s, and these costs determine the cost of a vertex relative to a
extra segments are included. Segments which are on cycles (an@Ven cluster.

thus are not required for connectivity) are said toreeéundant Figure 2 shows a simplified graph and partial assignment, while
In order to minimize total wire length and circuit area, redundan
segments are iteratively removed in a greedy fashion, until a low :
wirelength and low area connected subset is obtained. This general

approach has been continued in [6]. p

4.1. Partitioning Approach

While the partitioning and global routing problems may seem un-
related, the iterative deletion approach can be directly applied. We
considerk-way partitioning into four clusters here, as it illustrates
our approach more clearly than simple bipartitioning.

As with the routing problems, we begin withredundantsolu-
tion. Unlike most move-based algorithms, in which a vertex is as-
signed to a single randomly chosen cluster, we assign each vertex
to multipleclusters. If a vertex is assigned to more than one clus-
ter, these assignments aesglundant After an initial assignment
of vertices to multiple clusters, individual vertex assignments are
removed in a greedy manner, until a final non-redundant solution
is produced.

Figure 2 illustrates the iterative deletion approach. In this Fig-
ure, vertexv, is assigned to four distinct clusters, while connected
verticesv; andvs each have a single cluster assignment. We select
a single redundant assignment fer, and remove it; this selection
is based on the locations and assignments of vertices connected to
v2. While we may wish to have the final assignmenwefto ei-
ther cluster 1 or cluster 2, we do not commit to either at this step;
rather, we remove from consideration either cluster 3 or cluster 4.

The multi-way formulation provides an important contrast to
greedy clustering. While an operation in a clustering approach
might mergev, into cluster 1 or cluster 2, the deletion approach
simply specifies that, will notbe in either cluster 3 or cluster 4.
After one operation, the clustering approach would have no free-
dom left to optimize the location of vertax, while the iterative
deletion approach would have three of four possible choices still
available.

t Table 1 shows our approach for vertex and hyperedge assignments
to each cluster. Table 2 shows the resulting costs. Our current
mplementation utilizes an extremely simple cost calculation ap-
roach, which operates as follows.

e Each vertex contains a numberlimiks to clusters. Each link

is considered to be an assignment. When a vertex contains
only a single link, we say that it hasfixed assignment to

a cluster, or that the vertex fsxed A fixed vertex cannot

be moved, and will be placed in the cluster as part of the
algorithm output.

At initialization, link(v;,c;) = 1 for all verticesv;, and all
clusterse;.

Each connecting hyperedge also contains a numbiankcs
which are simply the summation of the links of the vertices
connected by the hyperedge. If a vertex of a hyperedge is
fixed to a given cluster, we say that the hyperedge is also fixed
to the cluster. If multiple vertices of the hyperedge are fixed
to distinct clusters, the hyperedge is cut.

For all edgeslink(ex, c;) = Ev-eek

The costof a hyperedge is calculated on a per-cluster basis.
Each cluster has different cost, based on the number of links
to the cluster. If a hyperedge is fixed, it has high cost for a
single cluster. If a hyperedge is cut, all clusters have a cost of

link(vi,cj)

We calculatecost (e, ¢;) as a function of the links of compo-
nent vertices. This function is described in more detail below.

e Thecostof a vertex is also calculated on a per-cluster basis,

and is simply the summation of costs of hyperedges to which
the vertex belongs.

cost(vi,cj) = Zvi@k cost(er, c;)

Initial graph

V), e——a> VeV

17e 27e 3
1 2
Cluster 2
Cluster 1
Cluster 4
Cluster 3

Figure 2. A redundant assignment of vertices to clusters. In
this example, the vertexv, is assigned to four distinct clusters.
Through the application of iterative deletion, the least desir-
able assignments fow, are removed, until a single assignment
for v, remains. In this example, assignments af; to clusters 1
and 2 are desirable, while assignments to clusters 3 and 4 are
less desirable.

Cluster 1| Cluster 2| Cluster 3| Cluster 4

e1 k2 0 0 0
€2 0 ko 0 0
Lv2 | k>] k> | 0] 0]

Table 2. Cost calculation for hyperedges and vertices. Hyper-
edgee; has a preference for cluster 1, while hyperedge. has
a preference for cluster 2. The cost associated with verted,

is derived from the costs of the hyperedges which connect to
it. As verticesv, and vz are fixed, we do not need to calculate
costs for them.

In our implementation we assign a cost /af to hyperedges
where vertices are completely unrestricted. When a vertex assign-
ment is removed (and we have at least some preference regarding
vertex assignments), we use a coskof and distribute it among
the clusters to which links remain. When a vertex becomes fixed
to a specific cluster, we use a costkaf and have a cost of 0 for
the remaining clusters. If the hyperedge is cut (vertices are fixed
to more than one cluster), we use a cost of O for all clusters.

In our experiments, we uge = 0, k1 = 1, andk, = 2. We di-
vide vertex costs by the degree of the vertex, and hyperedge costs
by the cardinalty of the hyperedge, in an effort to prefer small local
edges over larger ones (which are more likely to be cut). Experi-
ments with other cost functions are in progress.

We have a preference for removing redundant assignments
which are undesirableslative to the other possible assignments
for the vertex Rather than simply selecting the minimum cost el-
ement, we use thdifference between maximum and minimum as-
signment costo influence our selection. For example, if we have
one vertex;, assigned to cluster,, with cost 10, and to cluster,
with cost 11, and a second vertex has costs 10 and 20, we will
prefer to make a selection regarding (and we prefer to remove
v; from clusterc,y,).

In order to ensure balanced cluster sizes, we iteratively select the
best candidate within the cluster of highest weight. In bipartition-
ing applications, this results in an alternation between clusters. We
currently consider only exact or nearly exact partitioning (cluster
sizes differ by at most one vertex).

4.3. Random Seeds

In most implementations of the iterative improvement move-based
FM algorithm, optimization begins with a randomly generated par-
tition. By repeating the optimization, differing results can be ob-
tained.

We apply a similar technique here; fbrway partitioning, we
selectk vertices, and assign each to one cluster. From this ini-
tial assignment, neighboring hyperedges and vertices are biased
towards certain clusters. This random seeding produces a range of
solutions, and we select the best result observed.

4.4. Efficient Implementation

As is done by the FM algorithm, we repeatedly select one element
from the set of all vertices at each step. The FM algorithm owes its
efficiency to a simple gain bucket strategy, and we utilize a similar
scheme. Using this strategy, element selection can be performed
in constant time.

Cost updates are also constant time in practice. For partitioning
problems where the hypergraph is based on a circuit netlist, we can
expect a small upper bound on the cardinality of any vertex, or the
degree of any hyperedge.

The number of vertex assignments that must be removed is lin-
ear with the number of vertices, multiplied by the number of clus-
ters that we consider. If we are performihgvay partitioning on
a hypergraph with vertices, we must removg — 1) % n assign-
ments.

4.5. Summary

A fundamental difference between the approach presented here
and traditional partitioning approaches is that we begin wéth
dundantassignments of vertices to clusters, and remove them.
Conceptually, this is similar to the process of team construction
in professional sports. Duringtaaining campmany players are
considered for each position on the team; poor players are elimi-
nated from consideration one at a time, until the remaining players
constitute the final team.

5. EXPERIMENTAL RESULTS provement approach to become trapped in a local minima early in
the optimization process. The K-PM algorithm is run 20 times.

In many respects, the K-FM algorithm of [15] is something of a
straw man” multi-way partitioning approach; current approaches
to multi-way partitioning would involve multilevel clustering or
a reduction in the types of optimization moves considered. The
results here are interesting, however, as they clearly show that a
generic iterative improvement based approach has considerably
more difficulty than an iterative deletion based approach on a well
studied problem. For optimization problems in which we have
many possible choices, and iterative improvement methods pro-
vide poor performance, iterative deletion based approaches may
be quite effective.

5.1. Minimum Cut Experiments We are currently adapting our algorithm to produce output in a
. _— format that can be utilized by the K-PM algorithm, and expect that
In much of the previous work on hypergraph partitioning, the cost st processing of the iterative deletion solution will be compara-

objective is minimum cut, with each hyperedge contributing cost 0 pje or superior to that of K-PM alone, but will require a substantial
if uncut, or 1 if cut. We focus on this cost metric in this subsection. aquction in the number of optimization passes.

A primary objective of this work is to allow a direct and clear com-
parison of the iterative deletion approach to the more common it-
erative improvement approach. Thus, we are interested in flat bi-
partitions and multi-way partitions. State of the art partitioners
employ a number of techniques which improve results, obscuring
the relative merits of each algorithmic approach.

As we are interested in partitioning as it relates to place-
ment problems, we apply our approach to the recently introduced
ISPD98 benchmarks[1]. We consider both the metric of minimum
cut, and minimum weighted cut (where we have a variety of dif-
fering net weights).

5.1.1. Bipartitioning Results

To compare the performance of the iterative deletion approach
to that of bipartitioning algorithms, we utilize an implementation
of the FM[10] algorithm made available by Charles Alpert. This
implementation was developed by Shantanu Dutt and Wenyong
Deng, and was later improved by Charles Alpert and Andrew B.
Kahng. The FM algorithm provides a simple iterative improve-
ment approach, allowing a direct comparison.

In Table 3, we compare a single pass of our iterative deletion
partitioning (IDP) algorithm to multiple passes of the FM algo-

5.2. Weighted Minimum Cut Experiments

For performance driven placement applications, it is desirable to
model signal delay as part of our optimization objective. In deep
submicron design, delay is not linear with wire length, so we can
expect a large range of values. If we apply partitioning algorithms
to placement problems, a formulation which addresses weighted
edge cost may be more appropriate.

In this subsection, our objective is the minimization of the total
weight of cut hyperedges. The FM implementation of Dutt and

. X . Deng does not support weighted hyperedges; for comparison, we
rithm. We also apply the FM algorithm as a postprocessing step sq o own implementation of the FM algorithm. Performance (in

(IDtE N '?r':/l) using (tjhe iterative delt_ation so{uticln:n asa Stt;?““”tgt.poi”t terms of total cut sizes) of our FM implementation is comparable

e a1 o tha of Dut and Derfor th non-viighid abjcive

ferent seed. ’The IDP results reported are thé minimum, maximum, Oz?hfnvalgﬁgr;gen (I:rgp\?v(g gf dllizgngﬁ/l h?’ggrﬁg%ev‘cﬁgps ogszta_l-

and average cut sizes fexactbipartitions; other results allow a grocessiﬁg and the h,Metis zf\)lgorithm (;/ersic’)n 1.5.3) to the Eench-
5% variation in cluster size. Run time is roughly linear with prob marks, using net weights that ranged from 95 to 105. The weight of

lem size: the largest example, ibm18, requires just under two min- ; : . . - ?

: . a hyperedge; is95+i mod 11; there are 11 distinct weights, with
utes, running on a 233Mhz Pentium-based laptop computer. The ; : L X)
FM algorithm was also run 20 times, using different random seeds. the average edge weight being roughly 100 (we divide weights re

We also include the results of a state of the art partitioning algo- ported by 100 to make them comparable to the unit-cost results).
i . ; p 9 890" Taple 5 shows the results of these experiments; as our FM imple-
rithm, hMetis[13] version 1.5.

. -) . . . mentation is substantially slower than that of Dutt and Deng, we
While our iterative deletion based algorithm produces higher cut |, it our experiments to ten of the smaller benchmarks
sizes, the solution obtained can serve as a good starting point for As would be expected by the observations in [11] .the erfor-
FM-based improvement. In these benchmarks, the solution qualitym P 4 ' P

btained b ina EM h ; h pignance of the FM algorithm degrades substantially. The recom-
obtainéd by using "M as a postprocessing phase Were comparablg, e Last-In-First-Out (LIFO) strategy has little effect, as the
to the quality obtained by FM alone, but the number of improve-

X wide range of net weights results in extremely few ties for the the
ment passes required was roughly halved.

The quality of solution obtained by iterative deletion is com- FM algorithm, For variable edge weight problems, a single pass

bl hat of X L hich is “half - of iterative deletion outperforms iterative improvement; using the
parable to that of an Iterative improvement which is *half way” jierative deletion result as a starting point, iterative improvement

through a series of optimization passes. is able to obtain a solution that is much better than with iterative
5.1.2. Multi-Way Partitioning Results improvement or iterative deletion alone. The multilevel cluster-
ing approach of hMetis continues to produce extremely good so-

To compare performance on flat multi-way partitioning prob- |,tions, obtaining results that are nearly identical to those of the
lems, we use the results of the K-FM algorithm[15] and K-PM | pit-cost experiments.

algorithm[5], as reported in [5]. The K-FM algorithm provides a

simple iterative improvement approach, allowing a direct compar-

ison with the iterative deletion approach. Results of a state of the 6. CONCLUSION

art partitioning algorithm, hMetis[13], are included as well; this al- In this paper, we have presented a new partitioning algorithm based

gorithm employs multilevel clustering. These results are presentedon iterative deletion. As it supports multi-way partitioning, does

in Table 4. not require extensive clustering, runs in linear time, and can sup-
Again, we apply only asingle pass of iterative deletion. Sur- port complex cost functions, it is relevant to circuit placement

prisingly, the linear time greedy implementation of iterative dele- problems.

tion outperforms the K-FM algorithm, which employs multiple We have provided a comparison between the iterative deletion

passes of optimization. We run our IDP algorithm 20 times for approach, and the widely used iterative improvement approach.

each benchmark, while the K-FM results are from 50 runs. The We observe that each has areas in which they perform well. Iter-

abundance of possible choices apparently causes the iterative imative improvement performs well in bipartitioning, while iterative

IDP FM IDP + FM hMetis
Cut Cut Cut
Min Max Avg Min Max Avg | Passes|| Min Max Avg | Passes Cut
ibm01 854 1290 | 1037.6 264 662 483 11.9 270 627 501.6 6.0 180
ibm02 802 | 2289 | 1551.1 276 820 | 443.1 11.2 276 652 | 452.7 6.1 262
ibm03 2316 | 3240 | 2730.7 || 1359 | 3491 | 2200.5 18.6 || 1665 | 2270 | 1985.0 6.4 956
ibm04 2964 | 4683 | 3724.7 739 | 2789 | 1228.5 18.1 682 | 2533 | 1120.9 11.2 542
ibm05 3991 | 5973 | 4984.3| 2034 | 4007 | 2880.3 29.1 || 1989 | 3755 | 3011.7 9.4 1715
ibm06 2084 | 3770 | 28739 1027 | 2321 | 1364.2 18.4 || 1017 | 2004 | 1475.2 9.0 888
ibm07 2429 | 4944 | 38729 1044 | 3687 | 2342.7 20.4 || 1260 | 3365 | 2209.3 6.7 853
ibm08 3354 | 5448 | 3861.6 || 1317 | 4644 | 2725.9 23.2 || 1304 | 3764 | 2035.3 8.9 1142
ibm09 2294 | 5236 | 3422.8]| 1331 | 3696 | 2591.3 20.8 983 | 3492 | 1813.4 8.1 624
ibm10 6709 | 8261 | 7070.9| 2211 | 3680 | 2837.3 18.4 || 2239 | 3931 | 3279.9 10.7 1256
ibm11 5226 | 7587 | 6483.2| 2391 | 7678 | 4139.8 22.1 || 1543 | 4157 | 2922.2 14.1 960
ibm12 8681 | 12492 | 10869.0 || 2491 | 5788 | 3463.5 21.4 || 3257 | 5996 | 4428.2 14.1 1918
ibm13 4489 | 9112 | 6618.6 || 1272 | 3733 | 2243.2 17.4 || 1662 | 4479 | 2660.3 9.7 840
ibm14 8666 | 13206 | 11704.6 || 2876 | 11806 | 7144.5 26.1 || 3015 | 7431 | 5329.3 11.4 1837
ibm15 8794 | 12993 | 10603.1 || 4576 | 11509 | 8435.1 19.6 || 4719 | 7937 | 6266.7 10.9 2625
ibm16 || 12723 | 17943 | 14885.4|| 2279 | 10109 | 5933.1 20.2 || 2832 | 10728 | 5213.5 10.1 1755
ibm17 || 22021 | 28963 | 25423.3 || 5316 | 14258 | 8509.4 29.4 || 3834 | 11811 | 6971.3 18.9 2238
ibm18 5795 | 15730 | 10957.6 || 1791 | 5003 | 3254.8 26.0 || 1707 | 5638 | 4115.4 13.3 1541
[Ratio | 441] 7.33] 579 152 441] 272] [1.50] 3.80] 247] [1.00]

Table 3. Bipartitioning results for industry benchmarks. We compare runs of a single pass of our iterative deletion partitioning
(IDP) approach to those of a complete (multiple pass) run of an FM-based algorithm. We also consider the effects of applying FM
as a postprocessing step to the initial iterative deletion solution (IDP+FM). The results of the recent multilevel clustering based

partitioner, hMetis, are also included. The final row shows the average performance relative to that of hMetis.

4-Way Partitioning 8-Way Partitioning
IDP K-FM | K-PM | hMetis IDP K-FM | K-PM | hMetis
Cut Cut

Min Max Avg Cut Cut Cut Min Max Avg Cut Cut Cut

ibm01 1709 | 2740 | 2251.2 3212 576 496 3256 | 3842 | 3577.6 4234 857 755
ibm02 2625 | 5175 | 4150.1 5984 688 615 6611 | 7596 | 7118.9 7138 | 2069 1874
ibm03 4112 | 5288 | 4644.8 6737 | 2596 1682 6217 | 7651 | 6929.6 8263 | 3512 2396
ibm04 6117 | 7467 | 6655.6 8332 | 2290 1711 9116 | 10687 | 9606.0 || 10347 | 3751 2782
ibm05 6242 | 8694 | 7755.9 8537 | 4225 3040 8956 | 10093 | 9474.7 9387 | 5760 4443
ibm06 4500 | 6031 | 5244.0 8664 | 2096 1592 6537 | 8403 | 7751.0 10923 | 2954 2257
ibm07 5923 | 8302 | 7437.2| 12724 | 3069 2168 || 10300 | 12091 | 11222.4| 15725| 4375 3284
ibm08 7451 | 9766 | 8718.1 | 12845| 2945 2426 || 11528 | 13625 | 12476.6 || 16056 | 4532 3462
ibm09 7109 | 9821 | 8522.8 | 15888 | 2838 1685 || 13401 | 15549 | 144934 | 19619 | 4759 2664
ibm10 || 11178 | 16454 | 13611.5|| 20820 | 3163 2280 || 17880 | 21269 | 19730.0|| 26170 | 4888 3799
ibm11 9753 | 14488 | 12090.4 || 21448 | 4685 2300 || 16900 | 19138 | 17996.8 || 27479 | 6059 3543
ibm12 || 14762 | 18405 | 16777.7 || 23081 | 5258 3799 || 21278 | 25248 | 23338.2 || 28764 | 7946 6024
ibm13 || 11712 | 18785 | 15618.4 || 24758 | 3102 1760 || 19294 | 25802 | 22883.2 || 30975 | 4390 2858
ibm14 || 18989 | 26303 | 22483.8 || 38767 | 6451 3249 || 27873 | 36808 | 31513.2 || 49334 | 8424 4795
ibm15 || 19621 | 29655 | 24080.8 || 48130 | 8310 5014 || 30530 | 39930 | 36607.6 || 64235 | 11465 6610
ibm16 || 21134 | 36183 | 28970.0 || 54578 | 6228 3847 || 41441 | 51057 | 45358.1|| 65553 | 10372 6203
ibm17 || 35757 | 44883 | 40541.9|] 64340 | 9326 5398 || 50365 | 56957 | 53500.6 || 75432 | 14733 8695
ibm18 || 23066 | 30743 | 26997.5|| 53128 | 3952 2872 || 38854 | 45069 | 42234.6 || 65361 | 6588 5210
[Ratio [435 6.29] 536 881] 151 1.00[] 446] 5.39] 493] 6.80] 145] 1.00]

Table 4. Multi-way partitioning results for large benchmarks. We compare the iterative deletion partitioning (IDP) solution (with-
out postprocessing) to the flat multi-way partitioning algorithm K-FM, the pair-wise matching partitioner K-PM, and the state of
the art multilevel clustering approach of hMetis. The final row shows the average performance relative to that of hMetis.

IDP FM
min max avg min max

IDP+FM hMetis
avg min max avg

ibmO1 | 1393.32| 1865.67| 1664.06|| 1498.46| 2266.44

1834.97 676.73 | 1047.83| 885.47 181.48

ibm02 | 2250.44| 3742.90| 2834.55 725.83 | 2193.68

1341.71 786.24 | 1709.22 | 1116.31 261.28

ibm03 | 4355.60| 5530.26| 4865.17 || 3916.18| 4746.11

4378.61 || 2244.79| 3110.86 | 2558.95 955.62

ibm04 | 5560.26 | 6248.49| 5804.49 | 2640.45| 5187.13

4290.68 || 2935.87 | 3735.49 | 3258.18 541.81

ibm05 | 5996.70| 7535.68| 6766.83 || 4770.47| 6739.43

6127.14 || 3266.82 | 4903.49 | 4153.86 || 1760.51

ibm06 | 5754.91| 6860.46| 6206.89 | 2132.42| 6194.21

5392.24 || 2821.29| 3731.58 | 3170.51 922.75

ibm07 | 6267.37| 7835.69| 7269.60|| 7039.75| 8486.00

7591.87 || 2908.03 | 3884.71| 3530.42 883.54

ibm08 | 6656.86| 8817.66| 7801.13|| 8252.02| 9206.45

8874.09 || 3100.73| 4708.88 | 4101.97 || 1143.49

ibm09 | 8456.28 | 9359.26| 8851.69 || 9460.10 | 10748.72

10061.20 | 4190.30 | 4833.80 | 4439.38 656.30

ibm10 | 9534.35| 12222.33| 10197.81|| 9663.52 | 12342.00

10707.06 || 4657.03| 7346.20 | 5414.12 || 1264.73

[Rato | 741] 941] B830] 623] 898]

772] 355] 510] 423] 1.00]

Table 5. Variable weight bipartitioning results. We compare the iterative deletion partitioning solution to that of a traditional FM
algorithm, and to the combination of Iterative Deletion with post-processing by FM. We include also the result of the state of the
art partitioning algorithm, hMetis. Hyperedge weights vary from 0.95 to 1.05 (with an average weight of 1 across all nets). The

final row shows the average performance relative to that of hMetis.

deletion performs well in multi-way partitioning, and with vari- [3] C. J. Alpert and A. B. Kahng. Recent directions in netlist

able edge weights. The performance of iterative improvement ap-
proaches can be enhanced through the use of multilevel clustering

partitioning: A survey.Integration, the VLSI Journabages
1-81, 1995.

and a restriction of optimization moves considered; we anticipate [4] M. A. Breuer. A class of min-cut placement algorithms. In

that similar enhancements can be made to our iterative deletion
based approach.

With a single linear time optimization pass, iterative deletion
was able to outperform multiple passes of iterative improvement.
This suggests that the iterative deletion approach is able to make
many decisions that are of good quality from a “global” perspec-
tive, particularly when many choices are available. For the multi-
way partitioning problem, in which we have an extremely large
number of choices, the iterative deletion based approach seem
less susceptible to poor quality local minima. For modern cir-
cuit design problems, where we are faced with large numbers of
constraints and many optimization choices, iterative deletion may
prove to be extremely effective.

We are currently adapting our algorithm to produce out-

Proc. Design Automation Confpages 284-290, 1977.

[5] J. Cong and S. K. Lim. Multiway partitioning with pairwise

movement. InProc. Int. Conf. on Computer Aided Desjgn
pages 512-516, 1998.

[6] J. Cong and P. H. Madden. Performance driven global rout-

ing for standard cell design. IRroc. Int. Symp. on Physical
Design pages 73-80, 1997.

571 J. Cong and B. Preas. A new algorithm for standard cell

global routing. Integration, the VLSI Journall14:45-65,
1992.

[8] J. Cong and M. Smith. A parallel bottom-up clustering algo-

rithm with applications to circuit partitioning in visi designs.
In Proc. Design Automation Conpages 755760, 1993.

put that can be utilized by the K-PM algorithm of [5]. In [9] A. E. Dunlop and B. W. Kernighan. A procedure for place-

our experiments with bipartitioning, post-processing by the FM-
based algorithm[10] improved performance substantially, while
the “good starting point” produced by our iterative deletion ap-

ment of standard-cell visi circuitédEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systen@AD-
4(1):92-98, 1985.

proach reduced the number of optimization passes required. Wel10] C. Fiduccia and R. Mattheyses. A linear time heuristic for

expect similar results through post-processing with K-PM.
Alternative cost functions and methods to apply multiple passes

improving network partitions. IfProc. Design Automation
Conf pages 175-181, 1982.

of iterative deletion are currently under consideration. If we ex- [11] L. W. Hagen, D. J.-H. Huang, and A. B. Kahng. On im-

amine a single pass of an iterative improvement algorithm such as
FM, solution quality is generally extremely poor; multiple passes
may improve the performance of iterative deletion substantially.

plementation choices for iterative improvement partitioning
algorithms.|EEE Trans. on Computer-Aided Design of Inte-
grated Circuits and System$6(10):1199-1205, 1997.

While some progress has been made on these issues, work is inf12] D. J.-H. Huang and A. B. Kahng. Partitioning-based standard

complete at present.
We plan to adapt this approach for use in large circuit placement

cell global placement with an exact objective. Rroc. Int.
Symp. on Physical Desigpages 18-25, 1997.

applications. As our formulation can consider routing distances [13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multi-

or signal delay easily, we can produce rough circuit placements
quickly, and then refine them with more traditional local optimiza-
tion algorithms. [
Acknowledgements:the author would like to thank Prof. Jason
Cong, the members of the UCLA VLSI CAD Lab, and the review-

ers for their constructive comments. [15]

REFERENCES

[1] C. J. Alpert. The ispd98 circuit benchmark suite. Rroc. [16]

Int. Symp. on Physical Desigpages 80-85, 1998.

[2] C.J.Alpert, J.-H. Huang, and A. B. Kahng. Multilevel circuit
partitioning. InProc. Design Automation Conpages 530—
533, 1997.

level hypergraph partitioning: Application in visi domain. In
Proc. Design Automation Conpages 526-529, 1997.

14] B. Kernighan and S. Lin. An efficient heuristic procedure

for partitioning of electrical circuitsBell Systems Technical
Journal pages 291-307, 1970.

L. A. Sanchis. Multiple-way network partitioning with differ-
ent cost functionslEEE Trans. on Computerd2(22):1500—
1504, 1993.

D. Sylvester and K. Keutzer. Getting to the bottom of deep
submicron. InProc. Int. Conf. on Computer Aided Design
pages 203-211, 1998.

	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

